加熱及び/又は冷却を発生させるための太陽熱エネルギー収集器
专利摘要:
化学ヒートポンプは、活性物質を含有する反応器部分(1)と凝縮した状態で存在し、該活性物質によって吸収できる揮発性液体の部分を含有する蒸発器/凝縮器部分(3)とを含む。流路(4)が該反応器部分と該蒸発器/凝縮器部分を相互接続する。該反応器部分を加熱するために、この壁の一部分は太陽エネルギー収集器として構成され、それは結果として非常にコンパクトな構造にすることができる。少なくともこの反応器部分内に、その固体状態にある及びその液体状態又はその溶液相にある該活性物質の両方がマトリックスによって保持され、又は担持され、或いはマトリックスに結合されるように、該活性物質用のマトリックス(13)が設けられる。該マトリックスは酸化アルミニウムなどの不活性材料であり、該揮発性液体に対して浸透性であり、内部に該活性物質が配置される孔を有するのが有利である。特に、その液体状態の該活性物質が結合できる表面(単数又は複数)を有する材料を使用することができる。例えば、該マトリックスは、粉体又は圧縮された繊維材料などの分離した粒子を含む材料であることができる。 公开号:JP2011505538A 申请号:JP2010535911 申请日:2008-11-28 公开日:2011-02-24 发明作者:オルソン、レイ;ボリン、ゲラン 申请人:クライメイトウエル エービー(パブル); IPC主号:F25B17-08
专利说明:
[0001] 本出願は、2007年11月29日出願のスウェーデン国特許出願第0702648−7号の優先権及び利益を主張し、その全ての教示は参照により本明細書に組み込まれている。また、本出願は、国際特許出願公開第2007/139476号と共通の何らかの材料も有する。] [0002] 本発明は、加熱及び/又は冷却を発生させるための太陽熱エネルギー収集器(thermal solar energy collector)に関する。] 背景技術 [0003] 自由にアクセス可能な太陽エネルギーを収集することに存在する経済的及び技術的挑戦は、一般に知られている。そのような解決策は、技術的には温度の大きな、迅速な変動、変化する空気湿分及び機械的応力をうまく処理しなければならない。この装置、すなわち太陽エネルギー収集器は、やはり経済的に正当と認められる方法で比較的広い面積からの太陽エネルギーを、それを使用することができる一点に移動させるべきである。] [0004] 太陽冷却は、従来型の冷却プラントによって引き起こされるCO2排出をなくす効率的な方法として益々使用され始めてきている。しかし、太陽冷却システムに伴う欠点は、それらがしばしば一般的な冷却プラントより相当に高価なことである。太陽冷却システムでは、例えば化学ヒートポンプを使用することができる。] [0005] 化学ヒートポンプの機能の原理は良く知られており、例えば、米国特許第5,440,889号、第5,056,591号、第4,993,239号、第4,754,805号及び国際特許出願公開第94/21973号、第00/31206号、第00/37864号及び第2005/054757号を参照されたい。化学ヒートポンプでは、ヒートポンプのまさにそのプロセスを実行する活性物質であって、通常は双極性液体であり、ほとんどの場合水である揮発性媒体(吸収剤(absorbent))と一緒に働く活性物質が設けられる。従来技術によれば、この作用活性物質として、固体物質、液体物質又は「ハイブリッド物質」のいずれかを使用することができる。「固体」活性物質とは、この物質がいつでも、全工程及び全てのサイクル中、すなわちその中に吸収される揮発性媒体があるとき及びないときの両方で、固体状態のままであることを意味する。「液体」活性物質とは、この物質がいつでも、全工程及び全てのサイクル中、すなわちその中に吸収される揮発性媒体があるとき及びないときの両方で、液体状態のままであることを意味する。「ハイブリッド」物質とは、この活性物質がヒートポンプでの工程中、固体状態と液体状態の間を交互することを意味する。] [0006] 固体活性物質に対しては、ヒートポンプが中に組み込まれるシステムにおいて、冷却温度が全吐出工程中一定のままであること、及び比較的大きな蓄熱能力を得ることができることを含む利点が得られる。吸収剤として水を使用する固体物質に対する蓄熱能力の代表的な値は、冷却エネルギーとしてみると、約0.3kWh/物質1リットルである。固体物質の使用に伴う別の利点は、システムに可動構成部品が全く必要ないことである。熱は、物質と一様に接触しているラメーラ熱交換器又はプレート熱交換器を介して物質に供給され、又は物質から引き出される。したがって、前述の国際特許出願第00/31206号に記載される化学ヒートポンプでは、プロセス側に可動構成部品が全く設けられていない。固体物質に伴う欠点は、固体物質の一般的に低い熱伝導率に起因して、得ることができる出力が限定されることである。同じ特許出願には、特に、固体物質の不良な熱伝導率及びそれから結果として起きる低い出力/効率に伴う問題点を解決するための1つの方法 が記載されている。この方法は、固体物質が、熱交換器の周りに又は熱交換器内に容易に満たすことができるような稠度を有するスラリーを形成するように吸着物質(sorbate)中に泥状にされることを含む。スラリー内の吸着物質の量は、ヒートポンプの吐出された状態でその後存在するであろう吸着物質の濃度を上回るべきである。その後、この物質が充填されるとき、ヒートポンプの動作における吸着物質の通常の吸収で溶解しない最終的な焼結した形状、いわゆるマトリックスを獲得する。] [0007] 液体物質の使用に対しては、この物質は充填及び吐出工程の両方で熱交換器上に噴霧することができ、したがってそれぞれ効率的に冷却され、加熱されるので、高い出力が得られる利点がある。固体物質に伴う欠点は、吸収剤の希釈の作用として冷却能力が減少することである。実際にそれは、この物質を使用できる動作間隔を強く制限し、次いでこれは上記で物質1リットル当たりの冷却エネルギーとして見た蓄熱能力を減少させる。化学ヒートポンプで使用するための液体物質のほとんどは、好ましくは水の強力な吸湿性の無機塩の溶液であり、同様に水が吸収剤として使用される。このことは、溶解物質が結晶化することが許されないことに起因する別の制限を与える。結晶化はスプレーノズル及びポンプにおいて問題点を生ずる。] [0008] いわゆるハイブリッド物質を使用することによって、固体及び液体システムに伴う利点のうちのいくつかを組み合わせることができ、上記で述べた国際特許出願第00/37864号を参照されたい。この特許出願で開示される化学ヒートポンプは、ハイブリッド原理、ハイブリッド方法又はハイブリッドプロセスと呼ぶことができる特別な手順に従って動作する。そのプロセスでは、物質は固体状態及び液体状態の両方で工程中存在し、固体相は固体システムにおけるのと同じ大きなエネルギー密度でエネルギーを蓄熱するために使用され、一方物質への熱交換及び物質からの熱交換は、通例の液体システムにおけるのと同じ大きな効率で物質の液体相でのみ行われる。液体相のみが周囲に対する熱交換のために使用される。その条件は、固体及び液体相を工程中分離して維持することができることである。分離は、網若しくはフィルタ又はいくつかの他の方法などの、適切な種類の分離手段を使用してフィルタリングするよって得ることができる。しばしば「溶液(solution)」と呼ばれるこの液体相は、ポンプ輸送され、熱交換器上に噴霧される。溶液のみを使用する、すなわち常に液体である物質を伴うシステムの場合でのように、ハイブリッドシステムのポンプ、バルブ及びスプレーノズルが循環経路内の結晶によって封鎖されないことが重要である。] [0009] したがって一般に固体システムは、どのようなポンプ、バルブ及びスプレーノズルも必要としないので、この点に関して明らかな利点を有する。] [0010] 図laに、化学ヒートポンプを概略的に、全体的に示し、このヒートポンプは、前述の国際特許出願第00/37864号に記載されるハイブリッドプロセスに従って冷却又は加熱を発生させ、作用するように設計されている。このヒートポンプは、吸着物質を発熱的に吸収し、吸熱的に脱着させることができる多かれ少なかれ溶解した物質2を含む第1の容器1又は蓄熱器を含む。この第1の容器1は、パイプ4を介して凝縮器/蒸発器とも呼ばれる第2の容器3に接続される。この第2の容器3は、第1の容器1内での物質2の吸熱的脱着中、液体吸着物質5を形成するようにガス状吸着物質6を凝縮させるための凝縮器として働き、また第1の容器内での物質2内への吸着物質の発熱吸収中、ガス状吸着物質6を形成するための液体吸着物質5の蒸発器として働く。蓄熱器1内の物質2は、中に配置される第1の熱交換器7と熱伝導接触しており、熱交換器7は、次いで液体の流れ8を介して周囲から熱が供給され、又は周囲に熱を送ることができる。蒸発器/凝縮器部分3内の液体5は、中に配置される第2の熱交換器9と同様に熱伝導接触しており、熱の流れ10を介して第2の熱交換器9にそれぞれ熱を周囲から供給し或いは第2の熱交換器9から周囲に熱を送ることができる。このヒートポンプがハイブリッド原理に従って動作 するように、この第1の熱交換器7は、その固体状態の物質2と一緒に細かい網目の網又はフィルタ11内に封入されている。物質の液体状態である溶液は、蓄熱器1のより低い部分に存在し、そこで第1の熱交換器7の下に配置される自由空間12内に収集される。この空間から、溶液は導管13及びポンプ14を介して第1の熱交換器7の上に噴霧することができる。] [0011] 要約すると、以下が当てはまる。 −固体物質で働くシステムでは、反応が物質の2つの相状態の間で起きるので、一定の冷却温度が得られる。これらの2つの相状態の両方とも固体であり、この状態のうちの1つからもう1つの状態への変態で、吸収剤の一定の反応圧力を維持する。物質の全てが第1の状態から第2の状態に変態してしまうまで反応圧力は一定のままである。このシステムの欠点は、非常に低い熱伝導率とそれから結果として生じる低い出力である。その利点は、例えばそれがどのような可動部品もなしに働くこと、高い蓄熱能力と一定の反応圧力を有することである。 −ハイブリッド物質で働くシステムでは、吸収剤が物質によって吸収されるときすなわち吐出工程では、第1の相は固体であり、一方第2の相は液体であり、次いで上記と同じように吸収剤の一定の反応圧力が維持される。次いでこの物質は、一定の冷却温度が得られるのと同時に、固体状態から液体状態に逐次連続的に変化する。この工程は、物質の全てがその固体状態からその液体状態に変化してしまうまで一定の反応圧力で継続する。同様な方法で、物質が液体状態から固体状態に変化するときの充填工程で反応圧力は一定である。この蓄熱能力及び反応圧力は、固体物質に対するものと同等である。高出力を得るためにハイブリッド物質で働くシステムに使用されるこの方法は、液体物質で働くシステムにおけるのと同じ方法で溶液で働くはずである。液体は物質容器から結晶を分離するためのシステムを介して噴霧システムにポンプ輸送され、噴霧システムによって溶液は、反応器内で別個のユニットを形成する熱交換器上に撒き散らされる。] [0012] 太陽エネルギーによって駆動されるヒートポンプは、米国特許第4,231,772号に開示されており、そこでは蓄熱器として働くチャンバが太陽エネルギー集熱器に接続され、或いはそれ自体太陽エネルギー収集器として働く。] 発明が解決しようとする課題 [0013] 太陽エネルギー収集器との効率的な協働のための化学ヒートポンプを提供することが本発明の1つの目的である。] 課題を解決するための手段 [0014] したがって、この化学ヒートポンプでは、太陽エネルギー収集器に到達する太陽放射線から活性物質の加熱が効率的に得られるように、蓄熱器ユニット又は反応器ユニットが太陽エネルギー収集器と一体化される。したがってこの反応器は、異なる壁又は側面で画定される入れ物又は容器を含み、そのような壁又は側面の少なくとも一部分が太陽エネルギー収集器として構成される。] [0015] さらに、この化学ヒートポンプはハイブリッド原理に従って働き、特に効率的な設計を有する。] [0016] 上記で述べたように、固体物質で働く化学ヒートポンプは、非常に低い熱伝導率、したがって低い出力又は効率を伴う欠点と、どのような可動部品もなしに働く能力と高い蓄熱能力及び一定の反応圧力を有する利点とを有する。ハイブリッド物質で働く化学ヒートポンプは、より高い熱伝導率に起因する高い出力又は効率の利点と、その上、それらがどのような可動部品もなしに働くことができることと、それらが高い蓄熱能力及び一定の反応 圧力を有することとを有する。] [0017] ハイブリッド物質で働く化学ヒートポンプでは、活性物質の溶液が蓄熱器内で活性物質と熱交換器との間の熱伝導を増加させるために使用される場合は、それは、例えば活性物質が化学ヒートポンプでの全工程中どのような変位も受けないこと、すなわち、その結果活性物質がいつでも静止している又は活性物質を静止した方式で配置することによって達成することができ、いわゆる「固体」ハイブリッド物質を有する化学ヒートポンプを得ることができる。それを達成するために、ここではマトリックス又は担体と呼ばれる受動的な物質内に活性物質の溶液を吸い込ませ且つ/又は結合させることができ、この受動的な物質は、蓄熱器内の熱交換器と全体的に良好な熱伝導接触をしているべきであり、次いで互いに密接に一体化することができる1つ又は複数の物体のものとして配置することができる。この物質が受動的であるということは、それが活性物質による揮発性媒体の吸収及び放出で協働しないことを意味する。したがって、このマトリックスの機能は、活性物質の溶液をその位置に維持し、それによって、充填工程でその液体状態からその固体状態に、吐出工程中にその固体状態からその液体状態に活性物質が変化しているとき、熱交換器と活性物質の間の熱伝導を増加させることである。それによってこの溶液が固体物質より高い熱伝導能力をしばしば有することを利用することができる。このマトリックスは、ヒートポンプでのプロセスに対して不活性であり、一般的に活性物質の溶液相をそれ自体に結合する能力を有することができ、同時に活性物質が揮発性媒体と相互作用するのを可能にする物質から形成される。特に、マトリックスが形成される物体(単数又は複数)が、活性物質の溶液相を毛細管方式で吸収する且つ/又は結合することが効率的にできるべきであることが望ましい場合がある。このマトリックスは、例えば様々な粒サイズの様々な形状の粒を含む粉体、例えば様々な直径及び様々な繊維長さを有する繊維、及び/又は例えば均一である必要はないが形成されたマトリックス物体内で様々であることができる適切な気孔率を有する焼結した固まりなどの、多かれ少なかれ分離した粒子を含むことができる。この粒子のサイズ及び形状、すなわち特別な場合は粒サイズ、直径及び気孔率、及び固体マトリックスの場合は気孔率と、マトリックス物体内の材料の選択とは、それぞれの場合に完成した蓄熱器の蓄熱能力及び出力及び効率に影響を与える。マトリックスが熱交換器の表面に層として付着される場合は、この層の厚さも蓄熱器の出力又は効率に影響を与える可能性がある。] [0018] 液体が熱搬送媒体を形成するように液体をマトリックス内に吸い込むマトリックスの能力、及びマトリックスを介したガス運搬を依然として可能にするマトリックスの能力は、化学ヒートポンプ内の凝縮器/蒸発器ユニットに同様に適用可能である。化学ヒートポンプを充填するとき、ガスは熱交換器の表面で凝縮するべくマトリックスを介して運搬されており、次いでマトリックスにより吸収され、その後吸収された液体は、より多くのガスが冷却され、凝縮され、吸収されるようにマトリックスの熱伝導を増加させる。化学ヒートポンプを吐出させるとき、マトリックスは水蒸気を放出し、これが、その良好な熱伝導率に起因して蒸発のための熱を熱交換器の表面からこの液体を介して蒸発ゾーンまで運搬する吸収された揮発性液体を冷却する。] [0019] したがって、ヒートポンプでのこのプロセスは、物体又はろうそくの芯のような繊維又は粉体内に吸い込まれる活性物質によって実行されるということができ、これが高い出力又は効率に結果としてなることが判明した。この出力又は効率は、物体又は芯内の熱伝導とはほとんど関係ないが、液体相内の反応、すなわち特にその細かく分割された状態での活性物質が、細かく分割された固体材料より良好に熱を伝導する溶液に変化することに依存する。] [0020] 吸い込み材料又は吸収材料ということもできるこのマトリックスは、複数の異なる材料の中から選ぶことができる。例えば、成功した試験がマトリックスとして二酸化ケイ素の 織物、及び異なる割合で砂及びガラス粉体を含むマトリックスを使用して行われた。このヒートポンプは、マトリックスの構造体が揮発性媒体の蒸気相の運搬を可能にするように十分に浸透性であることと同時に、熱が液体相内で伝導されることによって正常に機能する。より固い構造体を形成するために、粉体又は繊維を焼結することによってマトリックスを製造することも可能である。] [0021] 太陽熱エネルギー収集器と一緒に構築される少なくとも反応器内に上記で説明されるようなマトリックスを含む、吸収機械とも呼ばれる化学ヒートポンプは、少なくともいくつかの場合に特別な利点をもたらすことができる。そのようなヒートポンプは、周囲空気などのヒートシンクからの媒体との効率的な、簡単な熱交換を有するように例えば構築することができる。] [0022] マトリックスを含む化学ヒートポンプは、太陽熱エネルギー収集器が通常働く過酷な環境に耐えるように、非常に頑丈に、耐久性のある方式で実施することができる。] [0023] 熱エネルギー収集器が吸収機械内に一体化されるとき、比較的広い面積からの太陽エネルギー放射線の入力をより小さな区域に移動させることは必要でなくなるが、これは、吸収機械のセットのその反応器部分(単数又は複数)を広い面積全体にわたり分布させるように吸収機械を実施することができるからである。これらの手段によってコストの利益を実現することができる。] [0024] 太陽熱エネルギー収集器を吸収機械と一体化することによって、太陽エネルギー集熱器及び吸収機械を製造するための材料の消費量を減少させることができ、したがっていくつかの場合には、太陽エネルギー収集器及び吸収機械を含むシステムのコストは半分にさえすることができる。] [0025] したがって、この吸収機械の外側の覆いは、1つ又は複数の以下の特徴を含むように設計することができる。 1.外側覆いの表面が、太陽熱エネルギー収集器などにおけるように、エネルギーを受け入れるように作られる。 2.外側覆いの表面をヒートシンク内の空気冷却器として使用できる。 3.外側覆いが同時に、封入されたマトリックス構造体用の外側真空保護具並びに熱交換器を形成する。] [0026] さらに、マトリックスを含む化学ヒートポンプは、外側媒体と熱交換するためのバッテリーを形成するように組み合わされる、例えば密閉のより小さなユニットとして比較的低いコストで製造することができる。] [0027] 一般的に、化学ヒートポンプは、太陽エネルギー冷却システム/太陽エネルギー加熱システムに含めることができ、それは主として4つの部分、すなわち、吸収機械と、太陽エネルギー収集器と、ヒートシンクと、分配システム、すなわち熱搬送媒体、通常は水のための様々なパイプ及びポンプとを含む。] [0028] 太陽エネルギー収集器と吸収機械を一緒に構築することによって、吸収機械に含まれる全ての構成部品は、含まれるどのような部分の機能も乱す又は害することなく太陽エネルギー収集器にも使用することができる。何も一緒に構築しない場合は、分配システムの全ての部分が必要である。したがって、システムのコストは相当に低減させることができる。] [0029] 本発明のさらなる目的及び利点は、以下の説明に記載され、部分的にこの記載から明ら かになり、或いは本発明の実施により知ることができる。本発明の目的及び利点は、添付の特許請求の範囲に特に指摘される方法、プロセス、手段及び組合せを用いて実現し、得ることができる。] [0030] 本発明の新規な特徴は、添付の特許請求の範囲に詳細に記載されているが、機構及び内容の両方についての本発明の、並びに本発明の上記の及び他の特徴の完全な理解は、添付の図面を参照して本明細書で以下に示す非限定的な実施形態の以下の詳細な説明を考慮することから得ることができ、本発明をより良く理解することができるであろう。] 図面の簡単な説明 [0031] ハイブリッド原理に従って働く従来技術による化学ヒートポンプの概略図である。 化学ヒートポンプの原理を全体的に示す概略図である。 化学ヒートポンプの原理を全体的に示す別の概略図である。 化学ヒートポンプの原理を全体的に示すさらに別の概略図である。 図1aと類似するが、活性物質が担体内に吸収される化学ヒートポンプの概略図である。 化学ヒートポンプの代替実施形態の、図2aと類似する概略図である。 LiClを活性物質として使用する、図2による化学ヒートポンプでの充填工程の線図である。 図3と類似するが、吐出工程の線図である。 図2に示す化学ヒートポンプ用の蓄熱器タンクの概略図である。 熱交換器表面に配置されるマトリックス材料の横断面詳細図である。 熱交換器表面に配置されるマトリックス材料の別の横断面詳細図である。 熱交換器表面に配置されるマトリックス材料のさらに別の横断面詳細図である。 熱交換器表面からフランジが突起する熱交換器表面に配置されるマトリックス材料の横断面詳細図である。 図2aの化学ヒートポンプの機能に類似する機能を有するが、異なる構造と外部熱交換器表面とを有するユニットチューブ又はユニットセルの概略図である。 図7aに類似するが、図2bの化学ヒートポンプの機能に類似する機能を有するユニットチューブの概略図である。 化学ヒートポンプの側面図である。 化学ヒートポンプの斜視図である。 図8aに類似する図であるが、化学ヒートポンプが特別に設計されたボックス内に構築されている。 図8bに類似する図であるが、化学ヒートポンプが特別に設計されたボックス内に構築されている。 内側及び外側熱交換器を含む筒状化学ヒートポンプの端面図である。 内側及び外側熱交換器を含む筒状化学ヒートポンプの別の端面図である。 図9a及び9bによる化学ヒートポンプの側面図である。 図8cに類似するが、内蔵式のヒートシンクを形成するためのボックスの別の設計に対する図である。 図8dに類似するが、内蔵式のヒートシンクを形成するためのボックスの別の設計に対する図である。] 図1a 図2a 図2b 図3 図7a 図8a 図8b 図8c 図8d 図9a 実施例 [0032] 本明細書では吸収機械とも呼ばれる化学ヒートポンプは、様々な方法で太陽エネルギー収集器と一緒に構築することができる。図lbに概略的に図示される化学ヒートポンプでは、2つの容器が設けられる。反応器1は、ガス状吸着物質を発熱的に吸収し、吸熱的に 脱着させることができる活性物質を収容する。反応器1は、パイプ又は流路4を介して凝縮器/蒸発器3に接続される。第2の容器3は、液体吸着物質を形成するようにガス状吸着物質を凝縮させるための凝縮器として、及びガス状吸着物質を形成するための液体吸着物質の蒸発器として働く。蓄熱器1内の物質は、熱の供給又は除去のために矢印41によって象徴的に示されるように外部媒体と熱交換接触している。蒸発器/凝縮器3内の液体も同様に矢印42によって象徴的に示されるように、第2の外部媒体と、熱を第2の外部媒体に供給できるように又は熱を第2の外部媒体から除去できるように、熱交換接触している。] [0033] 熱の供給のために、太陽エネルギー収集器43がここでは使用される。図lcを参照されたい。反応器容器1の側面又は表面が、熱の供給のための太陽エネルギー収集器として役立つことができるのが好ましい(矢印44を参照されたい。)。熱除去は、反応器入れ物の別の側面又は表面、及び例えば取り囲んでいる空気又は周囲空気を介してのような(図1dで矢印45を参照されたい。)、又は熱交換器の内側コイル(図1aと対照されたい。)若しくは熱交換器の外側コイルを介してのような、内側熱交換又は外側熱交換を使用して実施することができる。] 図1a 図1d [0034] ハイブリッド原理によれば、活性物質は固体状態と液体状態の間を変化する。化学ヒートポンプをハイブリッド原理に従って働かせるためには、活性物質が常に反応器1内に残っていなければならない。これを達成する1つの方法は、図laに示すような網11を使用してその固体形態での物質の移動度を制限することである。別の方法は以下に説明する。いつでも固体状態にある活性物質で働く化学ヒートポンプに対しては、このことは問題点ではない。] [0035] 次に図2aを参照して、上記の論議に従って太陽エネルギー収集器と一体化するのに適していることができる、改変された化学ヒートポンプを全体的に説明する。この改変された化学ヒートポンプは、活性物質を保持する且つ/又は担持するためのマトリックスを使用するハイブリッドプロセスを利用し、また凝縮液(通常水)を保持し及び/又は凝縮液を結合させるためのマトリックスも利用する。] 図2a [0036] この改変された化学ヒートポンプは、本明細書では単に「物質(substance)」とも呼ばれる活性物質2を収容する蓄熱器又は反応器とも呼ばれる第1の容器1を従来型の方式で含む。この物質は、その液体形態が本明細書でしばしば「揮発性液体(volatile liquid)」と呼ばれ、通常水であることができる吸収剤とも呼ばれる吸着物質を発熱的に吸収し、吸熱的に脱着させることができる。用語「揮発性液体」及び「水」は本明細書で吸着物質の液体形態を意味するために使用され、したがって水のみが言及されている場合でさえ、他の液体を使用することができることを理解されたい。ここではこの物質2は、開孔を有し、適切な不活性物質から作られる少なくとも1つの多孔質の物体を全体的に形成する又は少なくとも1つの多孔質の物体であるマトリックス若しくは担体13によって保持され、又は担持され、又はその中に吸い込まれるべきであるように示されている。このマトリックスは、代表的な場合には、適切な厚さを有する層例えば5〜10mmの厚さを有する層などの例えば比較的薄い層で付着される例えば酸化アルミニウムの細かく分割された粉体から構成することができる。この実施形態では、第1の容器2内のマトリックスは、第1の容器の垂直内部表面のところにのみ具体的に示すように、第1の熱交換器7のところに配置されるこの容器の内部表面のところにのみ付着させられる。この第1の容器1は、パイプの形状を有し、その端部で容器1、3の頂部側に接続される固定された、又は静止したガス接続部4を介して凝縮器/蒸発器とも呼ばれる別の容器3に接続される。この第2の容器は、第1の容器1内で物質2の吸熱的脱着で液体吸着物質5を形成するようにガス状吸着物質6を凝縮させるための凝縮器として働き、且つ第1の容器内で物質内の吸着物質の発熱的吸収でガス状吸着物質6を形成するように液体 吸着物質5の蒸発器として働く。この第2の容器3はここでは、第2の熱交換器9と接触しているその内部表面部分の半分が毛細管方式で吸い込んでいる材料14によって覆われるように図示されており、同じ内部表面の半分は自由である。図による実施形態では、それは、第2の容器3の内側垂直表面の半分は毛細管吸い込み機能を有する材料で覆われ、一方この同じ内部表面の半分は自由であることを意味する。ガス状吸着物質6の凝縮は、第2の容器3内の熱交換器9のこの自由表面のところで起き、蒸発は第2の容器の内部表面上で毛細管吸い込み材料14から生じる。] [0037] システムとも呼ばれる化学ヒートポンプの様々な構成部品、すなわち第1及び第2の容器1、3内の内部空間及び互いに流体接続しているガス導管4は全てガス気密であり、揮発性媒体又は吸収剤とも呼ばれる通常は水蒸気である化学的プロセスに参画しているガス6以外の全ての他のガスが空にされる。蓄熱器1内の活性物質2は、この実施形態では蓄熱器1を取り囲む垂直内部表面のところに配置され、したがって蓄熱器を取り囲むともいうことができる第1の熱交換器7の表面と直接熱伝導接触しており、この第1の熱交換器7は第1の液体の流れ8を介して周囲から熱を供給することができ、又は周囲に熱を送ることができる。蒸発器/凝縮器部分3内の液体5は、第2の熱交換器9の表面と同じような方式で直接熱伝導接触しており、この第2の熱交換器9は、この実施形態では蒸発器/凝縮器部分の垂直内部表面のところに配置され、したがってやはり蒸発器/凝縮器部分を取り囲むということができ、それぞれ第2の液体の流れ11を介して、そこに周囲から熱を供給することができ、或いはそこから周囲に熱を運搬することができる。] [0038] 化学ヒートポンプ内の活性物質2は、ヒートポンプが動作することを意図する温度でそれがヒートポンプの吐出及び充填工程で固体状態と液体状態の間を変化するように動作するように選択される。したがって、蓄熱器1内の反応は、活性物質の2つの相、固体相状態と液体相状態の間で起きる。吸収剤が物質によって吸収されるときの吐出工程では、第1の相は固体であり一方第2の相は液体であり、それで吸収剤に対して一定の反応圧力が維持される。次いでこの物質は、一定の冷却温度が得られるのと同時に、固体状態から液体状態に逐次変化する。この工程は、活性物質の全てが実質的にその固体状態からその液体状態に変化するまで一定の反応圧力で継続する。対応する方式で、充填工程での反応圧力は、この物質がその液体状態からその固体状態に変化している間一定である。] [0039] 吸着物質の溶液内で所望の濃度に希釈され、その後不活性粉体すなわち化学ヒートポンプの動作中どのような実質的な程度も変化しない材料の粉体から構成されるマトリックス内に吸い込まれる通常のハイブリッド物質(上記で述べた国際特許出願第00/37864号を参照されたい)を有利に使用することができる。したがってこの材料は、ヒートポンプ内の変化する状態中、固体状態を有すべきであり、それは、ヒートポンプの動作中それらの凝集状態を変化させる物質又は媒体のどれとも、化学的に相互作用すべきではない、すなわち化学的に影響し或いは影響されるべきではない。実施された試験では、この粉体は例えば酸化アルミニウムであり活性物質はLiClであった。他の可能性のある活性物質はSrBr2等であり得、上記で述べた国際特許出願第00/37864号をやはり参照されたい。この粉体の粒サイズはここでは重要であり得、毛細管方法で吸い込む又は吸収するその能力も重要である場合がある。マトリックスの適切な物体を形成するために、そのような粉体は、最初に熱交換器の1つ又は複数の表面に適切な厚さ、例えば5mmと10mmの間の厚さを有する層として付着させることができる。次いでほとんどの場合に、ある種類の、図示しない網構造体を、粉体から物体を形成するためにそれぞれの層を保持するように、熱交換器に付着させなければならない。例えば、パイプの外側、パイプの内側及び容器の底部に付着された10mmの厚さを有する層を使用して試験が行われた。この溶液、すなわち吸着物質とも呼ばれる揮発性媒体によって希釈された活性物質は、次いで残った溶液の全てが層内の粉体内に毛細管方式で結合するまで、その液体状態で層内の粉体内に吸い込まれ、そこから外に出るままにされる。その後この反応器は、固体物 質用の反応器が使用されるのと同じ方式で使用することができ、例えば上記で述べた国際特許出願第00/31206号を参照されたい。] [0040] 物質と一緒に中に保持されるこのマトリックスは、この場合は固体物体ではなく、ヒートポンプの吐出状態では濡れた砂に類似する緩い固まりである。しかし、ヒートポンプの充填状態では、このマトリックスは固くなる。活性物質の溶液は、その固体状態での物質よりかなり良好な熱伝導能力を有する。次いで第1の熱交換器7からの熱を効率的にこの活性物質に運搬し、又は活性物質から離して運搬することができる。例えば酸化アルミニウムから構成されるマトリックスが3モルのLiCl溶液で満たされる場合、システムの極めて迅速な且つ効率的な充填が約1モル溶液まで行われる。その後、活性物質は今は最早どのような溶液も含有しないので、すなわち液体相又は溶液相でどのような部分にも存在しないので、出力は低下する。しかし、このプロセスを0モルの濃度まで駆動して低下させるのに何の問題点も存在しない。吐出工程では、このプロセスは溶液が2.7から2.8モルである状態まで非常にうまく働き、その後遅くなる。これは、このマトリックスは3モルの濃度に達するときガスに対する浸透性を最早全く有さないのでそうなるのである。この状態で、マトリックスは満杯である、すなわちマトリックスは実質的に可能なだけ多くの溶液を吸収してしまっている。] [0041] マトリックス内に吸い込まれた溶液を使用するハイブリッドシステムの機能及び出力は、固体システムの機能及び出力より通常かなり良好である。しかし、ハイブリッド物質と自由溶液のみを使用するシステムに対して必要であるものより大きな熱交換器表面が必要である。試験は、「結合された(bonded)」溶液相を使用するハイブリッドシステムでは、自由溶液のみ使用するハイブリッドシステムと同じ出力に到達するために2から3倍より大きな熱交換器面積が必要であることを示している。しかし、熱交換器表面の増加した有効な面積を有するそのようなシステムの表面での出力密度は非常に小さいので、熱交換器は必ずしも直接的に作用しなければならないわけではなく、有利に拡大することができる。「直接的に作用する熱交換器」、又は「熱交換器と活性物質/溶液の間の直接的に作用する熱交換」という用語は、熱交換器内の熱搬送/冷却媒体又は流体が同じ壁の内部表面のところで循環する間、物質/溶液が、熱交換器の平滑な、単純な壁の外側表面のところに存在すること、すなわちこの物質/溶液が、熱交換器の比較的薄い、平らな壁のみを介して熱交換器媒体と実質的に直接的な接触を有することを意味する。「熱交換器又は拡大された表面との熱交換」という用語は、例えば波付けされた及び/又はフランジなどのある適切な種類の突起部分が設けられたことによって拡大された有効な熱交換面積が与えられている熱交換器の表面のところに物質/流体が存在することを意味する。マトリックス内に吸い込まれた溶液を使用するハイブリッドシステムに対しては、それは、マトリックスが熱交換器のそのような表面のところに配置されることも意味する。] [0042] 実験室規模で行われ、次いで実寸大に対して計算し直された試験が、それぞれ充填及び吐出に対するデータを与え、それは図3及び4の線図に現れている。これらの試験は、直径100mm及び高さ130mmの1リットルの円形の円筒状入れ物の形状を有する蓄熱器1を使用して行われ、中に物質を含有する不活性材料の10mmの厚さを有する層13がその中に、入れ物の円筒状内部表面のところに、すなわちその外皮表面の内部側面のところに配置された。このマトリックス材料及び物質は、この実施形態では、綿布16又は細かい網目の網などのより細かい網目構造体の外部覆いを有する網15を含む網構造体によってそれらの場所に保持される(図5を参照されたい。)。不活性担体及び物質を含む層のこの構造又は機能のどのような変化も、実施された試験中観察されなかった。] 図3 図5 [0043] このマトリックスの全体的な構造を図6aに概略的に示す。多孔質のマトリックス材料のこの層又は物体13は、熱交換器壁23の片側に付着され、孔24を有する。この孔は、ガス状吸着物質の運搬及び吸収を可能にするような横断面を全体的に有する。このマト リックスは、ヒートポンプの動作のある段階で存在できる、残りの流路25内のガス状吸着物質と相互作用することができる活性物質2を、壁上でこの孔内に担持することができる。この孔は、26に示すようにそれぞれ溶液又は凝縮液で完全に満たすこともできる。このマトリックス材料は、それがその表面のところに活性物質/溶液/凝縮液を結合し、したがって水がシステム内で流体として使用される場合、それが適切に親水性になる或いは少なくとも親水性表面を有することができるように選ばれる。しかし、親水性表面を全く有さない、若しくはその溶液相の活性物質によって全体的に濡れる表面が全くない、又はその溶液相の活性物質が十分に結合されていない材料も、たとえそのようなマトリックスを有する化学ヒートポンプがヒートポンプの動作の数サイクル中しか満足に働かないとしても、熱交換器壁に付着される前にマトリックスを活性物質と一緒に混合又は攪拌することによって、活性物質がマトリックス内に導入されるという条件で使用することは可能である。この孔のサイズは、例えばそれらが吸収すべき液体相に対して毛細管吸い込みするように選択することができ、このことは凝縮器/蒸発器内に配置されるマトリックスに対して特に適している可能性がある。孔24の代表的な横断面寸法は、10〜60μmの範囲内にあることができる。狭すぎる孔を有することは、それらが揮発性媒体の活性物質の全ての部分との相互作用をより困難にする可能性があるので不利になる場合がある。この孔の体積は、マトリックス物体のかさ体積の例えば少なくとも20%、好ましくは少なくとも40%、少なくとも50%でさえあることができる。このマトリックスは上記で述べたように、別法として焼結した又は同等の材料のものであることができ、すなわち実質的に固体の、結合された物体を形成することができる。このマトリックスは、多かれ少なかれ球状の粒子(図6b参照)、又は例えば1:2から1:10の範囲のなどの長さ/厚さ比を有する比較的短い繊維部片からの細長い粒子(図6c参照)、などの異なる形状の粒子からも形成することができる。この熱交換器壁23は、図6dに示すようにフランジ27を設けることができる。] 図6a 図6b 図6c 図6d [0044] マトリックス材料の例1 マトリックス材料として適した材料がAl2O3粉体から製造される。この粉体粒の密度は2.8kg/cm3であり、それらの直径は2〜4μmである。この粉体は、上記の説明に従って中に含有される活性物質の溶液と共に複層で付着され、複層内の乾燥マトリックス材料は、完成マトリックス材料の平均充填率又は充填度0.45を与える、すなわち体積のほとんど半分が粉体粒によって占められている約0.46kg/cm3のかさ密度を有する。作り出された複層内の粉体粒間の流路は、60μm程度の大きさの直径を有する。] [0045] マトリックス材料の例2 マトリックス材料として適した材料が(重量で)1部のポルトランドセメントと(重量で)5部の例1でのようなAl2O3の粉体の混合物を成型することによって製造される。この材料は、「焼結された」とほぼ見なすことができる。] [0046] マトリックス材料の例3 マトリックス材料として適した繊維材料が、54%のSiO2と47%のAl2O3から構成され、約1700℃の融点を有する繊維から製造される。この繊維の密度は2.56kg/cm3であり、その直径は、2〜4μmである。この繊維はそれらの詰め込み密度を増加させるために濡れた状態で圧縮される。圧縮された材料を乾燥させた後のかさ密度は、約0.46kg/cm3であり、それは完成マトリックス材料の0.17の平均充填比を与える。圧縮された材料内の繊維間の流路は、約5μmと10μmの間の直径を有する。] [0047] 上記で説明した実施形態では、マトリックス層13は、熱交換器の実質的に平滑な内部表面に対して付着するなど、可能な限り最も簡単な方式で付着された。] [0048] 別の実施形態では、ユニットチューブ29が設けられ、その中に反応器1及び凝縮器3が同じ閉じられたチューブの内側に配置される。次いでこの反応器部分1は、壁の内部表面の底部部分の周りに配置されるそのマトリックス2を有する(図7aを参照されたい)。凝縮器/蒸発器部分3を形成するこのチューブの頂部部分は、ダイアフラム(diaphragm)30によって分離されており、そこから内部チューブ32内のガス流路31がチューブの最頂部部分33まで通過し、次いでそこから蒸気をユニットチューブ内でガス流路と上側壁表面の間の空間34内に凝縮させ、収集することができ、またこの空間から蒸発させることができる。そのようなユニットチューブは、ガラス又は琺瑯加工された鋼から完全密閉式に製造することができる。] 図7a [0049] ユニットチューブ29はその凝縮器/蒸発器部分3内に配置されるマトリックス物質14をも有することができ、次いで流路38が凝縮液及び蒸気がマトリックスの全ての部分まで通過できるようにチューブ32の外部表面とマトリックスの内部表面の間に形成されるように、それは、チューブの内部表面の頂部部分のところで、空間34の内側に配置することができる(図7bを参照されたい)。] 図7b [0050] 凝縮器内の全ての流体、すなわち通常は全ての水が毛細管方式で吸い込まれ、それによって化学ヒートポンプ内で自由液体としては完全に存在しなくすることも可能である(図2bの設備を参照されたい)。ここでは、頂部内部表面を除く蒸発器/凝縮器3の全ての内部表面に、毛細管吸い込み可能なマトリックス材料が設けられている。したがって、熱交換媒体はやはりこの容器の底部のところで循環していなければならない。どのような自由液体もないそのような構成は、例えば上記で説明されたユニットチューブ又はユニットセルで達成することができ、追加の例を以下に説明する。] 図2b [0051] 次に太陽エネルギー収集器と一緒に構築される化学ヒートポンプのより詳細な例を説明する。] [0052] 平坦形式の吸収機械と一緒に構築される太陽エネルギー収集器(SADp) 図8a〜8dに示すように、反応器1、凝縮器/蒸発器3及びガス流路4を含む吸収機械が、ボックス又はケーシング61内に配置される太陽エネルギー収集器と一緒に構築される。このボックスは、ボックスの内側を内部に反応器が配置される前面空間63と内部に凝縮器/蒸発器3が配置される後面空間64に分割する内側分離壁62を有する。ガス流路4は、この分離壁を貫通して延びる。反応器1及び凝縮器/蒸発器3の両方は、それらの横方向広さに対して比較的小さな厚さを有するように、パネルの形状に類似する平坦な形状又はプレート形状を有するように設計することができる。ガス流路4は、例えばパネル形状部分の中央に接続することができる。] 図8a 図8b 図8c 図8d [0053] さらに、このボックス61はその前面に、太陽放射線が前面空間内に浸透できるように、太陽光線に対して透明な壁又はプレート65を有する。次いで太陽は、昼間この透明な壁を貫通して、前記壁に面し、前方に向けられた反応器1の壁の部分から構成される吸収機械の表面66を照らすことができる。次いでこの表面、すなわち前方に向けられた壁の前記部分は、反応器の真空密な外壁の一部分であることができ、例えば金属又はセラミック材料から作ることができる。前記表面66は、太陽エネルギー収集特性を有する太陽熱エネルギー収集器としても設計され、その中に太陽エネルギーを受け取ることができ、同時に熱エネルギーを放射しない又は少なくとも有意な程度では少しも熱エネルギーを放射しないことができるはずである太陽熱エネルギー収集器の典型的な特性を含み、このことは、その表面に付着される光学的に選択的な層を付与することによって従来方式で達成されている。他の熱損失は、ボックス61の他の壁に何らかの断熱を施すことによってある程度避けることができる。] [0054] この充填工程の機能は以下の通りである。] [0055] 吸収機械の反応器部分1は昼間加熱され得る。これは、透明な壁65を通過し次いで表面/壁部分66に到達する太陽放射線によって起きる。この表面は、入射太陽放射線を熱に変換するように構成され、この熱は表面/壁部分の材料によって反応器の内部に伝導され、そこで活性物質によって結合された吸着物質の蒸発を引き起こし、例えば水蒸気を発生させる。この水蒸気は流路4を介して吸収機械の蒸発器/凝縮器3に移動し、そこで水蒸気は凝縮し、マトリックスが使用される場合マトリックス内で水として結合され得る。この充填工程は、活性物質が凝縮した吸着物質の温度と比較して十分に高い温度を有する限り継続する。この凝縮液は、ヒートシンクとの熱交換によって冷却され、例えば活性物質に対してほぼ40℃低い温度に保持することができる。次いで通常の日々の入射太陽放射線によって活性物質は完全に固体状態に変換され、機械は完全に充填される。] [0056] 吐出工程でのこの機能は以下の通りである。] [0057] 太陽が壁65を介して吸収機械を照らし終えた後、所望の場合、加熱又は冷却の配送を行うことができる。加熱が所望される場合、適切な温度の図示しないヒートシンクに接続されている水が蒸発器/凝縮器3のところのパイプコイル67内を循環しており、凝縮液を例えば周囲空気の現行の温度に対応する温度にさせることによって達成される。次いで凝縮した吸着物質は蒸発し、反応器1内の活性物質までその中に吸収されるように通過する。次いで、中にこの吸着物質を含有する活性物質は、凝縮液より約40℃暖かくなることができる。例えば凝縮液が+5℃の温度に維持される場合、吸湿性の塩マトリックス、すなわち吸着物質を含有する活性物質の温度は、約45℃になることができる。例えばパイプコイルが反応器1の後面側に当てられる場合は、それらは図示しない既存の水系の加熱システムに接続することができる。次いでこれらのパイプコイル内の水は、水系の加熱システムのパイプまでポンプ輸送される。] [0058] 代わりに、冷却が所望される場合、蒸発器/凝縮器3のところのパイプコイル67は、冷却をそれが望まれている場所まで運搬するために、図示しない水系冷却システムに接続される。同時に、反応器1のところのパイプコイル68は、図示しないヒートシンクに接続され、反応器を例えば周囲空気の現行の温度に維持する。このパイプコイル67、68は、対応する部分の後面側に配置することができる。次いで、活性物質が例えば45℃の温度で維持される場合、パイプコイル67からのほぼ4℃の温度を有する水を水系冷却システムに送ることができる。] [0059] 筒状型式の吸収機械と一緒に構築される太陽エネルギー収集器(SaDr) この実施形態では、図7bによるユニットチューブに類似するが別の設計を有する型式のユニットチューブ又はユニットセルが使用される。] 図7b [0060] 太陽エネルギー収集器と一緒に構築される吸収機械は、同軸に配置される外部ガラスチューブ71と内部ガラスチューブ72との間に形成される真空密な空間を含む(図9a及び9bを参照されたい)。吸収機械の異なる部品、反応器、蒸発器/凝縮器及び接続ガス流路は、この真空密な空間内に配置される。] 図9a [0061] アルミニウムプレート73が、共通軸に向けられる内部ガラスチューブ72の表面に当てられ、このアルミニウムプレートは、アルミニウムフランジ熱交換器を形成し、内部銅パイプコイル74の軸方向に延びる部分の周りも回り、それと良好な熱伝導接触をしている。この銅パイプコイル及び曲げられたアルミニウムプレートは一緒に内部熱交換器を形成する。] [0062] 同じ方式で、アルミニウムプレート75が外部ガラスチューブ71の主要な部分又は主本体の周りを延びる。したがって、このアルミニウムプレートは、円筒軸に平行なストリップ形状の領域がそこから取り除かれた円筒の形状を有することができる。さらに、このアルミニウムプレート75は、外部銅パイプコイル76の軸方向に延びる部分と良好な熱伝導接触をしている。この銅パイプコイルとこの曲げられたアルミニウムプレートは一緒に外部熱交換器を形成する。外部アルミニウムプレートは、吸収機械全体に取り付けるのに適した、軸方向に延びる、比較的広いストリップ形状の領域77を有することができる。外部熱交換器の自由表面は、太陽エネルギーを受け取ることができ、同時に少なくとも言及できる程度では少しも熱エネルギーを放射しないことができる太陽熱エネルギー収集器の典型的な特性を有する太陽エネルギー収集表面として構築することができ、それは表面に付着される、図示しない、いわゆる光学的に選択的な層を使用することによって達成することができる。] [0063] 吸収機械が、反応器及び蒸発器/凝縮器の両方にマトリックスを含む、ハイブリッド型式である場合は、少なくとも特定の場合に有利であり得る特別の実施形態を得ることができる。凝縮液、すなわち通常水を保持するための吸収機械のマトリックスは、外側に向けられる内側ガラスチューブ72の壁表面の層78に対して形成され、その結果この層は筒状形状を有する。活性物質、すなわち通常は吸湿性の塩を保持/担持するためのマトリックス79は、外側ガラスチューブ71の内側上に層として形成され、したがってやはり筒状形状を有する。したがって、両方のマトリックスは、ガラスチューブ及び内側及び外側アルミニウムプレートの円筒状壁と適切に同軸状である比較的厚いチューブの形状を有する。これらのマトリックスの間に、余地又は中間空間80が存在し、それは上記で説明されたガス流路(4)として役立ち、やはり比較的厚いチューブの形状を有する。] [0064] このガラスチューブは、マトリックスとその中に配置される活性物質及び吸着物質と一緒に、図面に示すもの以外の他の型式の熱交換器と一緒に使用できることは明らかである。したがって、それらは例えばどのようなそれ自体の太陽エネルギー収集表面もなしで、又は太陽エネルギー収集器と直接接触せずに使用することができる。] [0065] 筒状型式のいくつかのそのような吸収機械は、例えば平坦なアセンブリを形成するように、図示しないバッテリーの形態で互いに近接して配置することができる。] [0066] 充填工程でのこの機能は以下の通りである。] [0067] 太陽熱エネルギーを受け取るのに都合の良い特性を有する外部熱交換器を伴う、同軸のガラスチューブによって限定される真空密空間を含む吸収機械は、外部熱交換器の表面が日中に太陽によって照らされるように配置される。] [0068] この結果は、外部熱交換器75、76及び外側ガラスチューブ71が太陽放射線によって加熱され、その結果、中に吸湿性の塩を含有する外側マトリックス79は水蒸気を放出し始め、それが次いで80のところの中間空間を介して内側マトリックス78まで短距離移動し、そこで蒸気は凝縮され、前記マトリックス内に水として結合される。この充填工程は、外側マトリックス及びマトリックス内の吸湿性の塩が太陽放射線に曝されることに起因して十分高い温度を有し、同時に内側マトリックスが、図示しないヒートシンクからの冷却によって吸湿性の塩の温度より低い温度、例えばほぼ40℃より低い温度に維持される限り継続する。この冷却は、ヒートシンクに接続される水が内側銅パイプコイル74を介してポンプ輸送され、この冷水が内部銅パイプの周りを延びる内側アルミニウムプレートのフランジ81を冷却し、それが次いで凝縮液を含有する内側マトリックス78を冷却することによって達成される。] [0069] 吐出工程でのこの機能は以下の通りである。] [0070] 太陽が吸収機械を照らすのを停止した後、所望の場合、加熱又は冷却の配送を行うことができる。加熱が所望される場合、図示しないヒートシンクに接続されている水が銅パイプ74の内側コイル内を循環しており、次いで凝縮液を含有するマトリックス78の温度が例えば周囲空気の現行の温度に維持されることによって行われる。次いで外側マトリックス79内の吸湿性の塩は、その温度が例えば+5℃に保持される内側マトリックスより例えば約40℃暖かくなる。次いでこの吸湿性の塩は45℃の温度を取り、銅パイプ76の外側コイルは、図示しない既存の水系加熱システムに接続され、このコイル内の水を加熱システムのパイプ内にポンプ輸送する。] [0071] 代わりに、冷却が所望される場合、吸収機械の内側銅パイプコイル74が、図示しない水系冷却システムに接続され、そこに冷却が送られる。同時に銅パイプ76の外側コイルは、外側マトリックス79及び中に含有される塩が、例えば周囲空気の現行の温度に維持されるような方式で、図示しないヒートシンクに接続される。このヒートシンクが吸湿性の塩の温度を例えば45℃に維持する場合、水を含有する内側マトリックス78からの水は、内側銅パイプコイル76を介して、ほぼ5℃の温度で水系冷却システムに送ることができる。] [0072] 吸収機械及びヒートシンクと一緒に構築される太陽エネルギー収集器(SADV) 太陽エネルギー収集器と一緒に構築される吸収機械は、図8a〜8dによる吸収機械と同じ方式でボックス61内に構築し、配置することができる。ここではこのボックスは、分離壁62によって接続される、その頂部及び底部側のところで、すなわち全体的に2つの対向する側で開口している。このボックスには、フラップ91も設けられており(図l0a〜10b参照)、それは第1の開口側のところで分離壁の縁部と連接されている。このフラップは、前方及び後方に開くことができ、周囲空気が反応器1の表面又は蒸発器/凝縮器3の表面のいずれかを冷却できるようにし、ボックス61内でそれぞれ前面及び後面空間63、64を通る自由通路を可能にするようにフラップを設定することによって、空気が第2の開口側から、それぞれの表面上を自由に流れるのを可能にする。] 図8a 図8b 図8c 図8d [0073] したがって、それぞれの表面上を流れる、周囲空気からヒートシンクが得られる。] [0074] 充填工程でのこの機能は以下の通りである。] [0075] 吸収機械の反応器部分1は日中に加熱されることができる。これは、透明な壁65を通過し次いで表面/壁部分66に到達する太陽放射線によって起きる。この表面は、入射太陽放射線を熱に変換するような性質のものであり、この熱は表面/壁部分の材料によって反応器の内部に伝導され、活性物質によって結合された吸着物質が蒸発し、例えば水蒸気を発生させるのを引き起こす。この水蒸気は流路4を介して吸収機械の蒸発器/凝縮器3に運搬され、その中で水蒸気は凝縮し、マトリックスが使用される場合前記マトリックス内で水として結合され得る。この充填工程は、活性物質が凝縮した吸着物質の温度と比較して十分に高い温度を有する限り継続する。この凝縮液は、ヒートシンクとの熱交換によって冷却され、例えば活性物質の温度に対して約40℃低い温度に維持することができる。ヒートシンクと一緒に構築されるこの機械では、それは、比較的冷たい周囲空気が蒸発器/凝縮器3の上を自由に流れ、それを、さらに特別な場合には水を含有するマトリックスを冷却することができるように、フラップ91を開いて保持することによって達成される。通常の日々の入射太陽放射線に対して、この活性物質は完全にその固体状態に変換され、次いで機械は完全に充填される。] [0076] 吐出工程でのこの機能は以下の通りである。] [0077] ヒートシンクと一緒に構築されるこの機械では、それは、空気が蒸発器/凝縮器3の上を自由に流れ、それを、特別な場合にはこれらの図に図示しない水を含有するマトリックスを冷却することができるように、フラップ91を開いて保持することによって行われる。] [0078] 太陽が壁65を介して吸収機械を照らし終えた後、所望の場合、加熱又は冷却の配送を行うことができる。加熱が所望される場合、これは、凝縮液が例えば周囲空気の現行の温度に対応する温度を取るように、適切な温度のヒートシンクに接続されている水が蒸発器/凝縮器3のところのパイプコイル67内を循環していることによって達成される。ヒートシンクと一緒に構築されるこの機械では、それは、空気が蒸発器/凝縮器3の上を自由に流れ、それを、特別な場合には水を含有するマトリックスを冷却できるように、フラップ91を開口して保持することによって行われる。次いで凝縮した吸着物質、すなわち通常は水は蒸発し、反応器1内の活性物質までその中に吸収されるように通過する。次いでこの活性物質は、中に含有される吸着物質と一緒に凝縮液より例えば約40℃暖かくなることができる。例えば後者が+5℃の温度に維持される場合、吸湿性の塩マトリックス、すなわち中に含有される吸着物質と一緒の活性物質の温度は、ほぼ45℃になることができる。パイプコイル68が反応器1の例えば後面側に配置される場合は、それらは図示しない既存の水系の加熱システムに接続することができる。次いで、パイプのこれらのコイル内の水は、水系の加熱システムのパイプまでポンプ輸送される。] [0079] 代わりに、冷却が所望される場合、蒸発器/凝縮器3のところのパイプコイル67は、冷却をそれが望まれている場所まで運搬するために、図示しない水系冷却システムに接続される。同時に、反応器1のところのパイプコイル68は、ヒートシンクに接続され、反応器1の温度を例えば周囲空気の現行の温度に維持する。ヒートシンクと一緒に構築されるこの機械では、これは、比較的冷たい空気が反応器の上を自由に流れ、吸湿性の塩、及び特別な場合はその保持マトリックスを冷却できるように、フラップ91を開いて保持することによって達成することができる。次いで、活性物質が例えば45℃の温度で維持される場合、パイプコイル67からのほぼ4℃の温度の水を水系冷却システムに送ることができる。] [0080] 本発明の特定の実施形態が本明細書で図示され、説明されたが、多数の他の実施形態を予想することができ、多数の追加の利点、改変及び変更を本発明の趣旨及び範囲から逸脱することなく当業者は容易に思いつくことができることを理解されたい。したがって、そのより広い態様での本発明は、本明細書に示され、説明された特定の詳細、代表的な装置及び図示された例に限定されない。したがって、添付の特許請求の範囲及びそれらの均等物によって定義される一般的な発明性のある概念の趣旨又は範囲から逸脱することなく、様々な改変を行うことができる。したがって、添付の特許請求の範囲は、本発明の真の趣旨及び範囲に入るような全てのそのような改変及び変更を包含することを意図していることを理解されたい。多数の他の実施形態を、本発明の趣旨及び範囲から逸脱することなく予想することができる。]
权利要求:
請求項1 活性物質と、該物質によって第1の温度で吸収させ、該物質によって第2のより高い温度で脱着させることができる揮発性液体とを含む化学ヒートポンプであって、該活性物質を含有し、外部媒体によって加熱され、及び冷却されるように構成される反応器部分、凝縮した状態で存在する該揮発性液体の一部分を含有し、外部媒体によって加熱され、及び冷却されるように構成される蒸発器/凝縮器部分、及び該反応器部分と該蒸発器/凝縮器部分を互いに接続する、該揮発性液体の蒸気相のための流路を含む上記化学ヒートポンプにおいて、該反応器部分が、太陽エネルギー収集器として構成される側壁の領域を有する、又は太陽エネルギー収集器と直接接触する側壁の領域を有する、入れ物又は容器と、該側壁と接触している、該活性物質用のマトリックスとを含み、該活性物質及び該揮発性液体が、該活性物質が該第1の温度のところで固体状態を有し、該活性物質が該揮発性液体及びその蒸気相を吸収するとき直ちに又は直接的に部分的に該固体状態から液体状態又は溶液相に変化し、且つ該第2の温度のところで液体状態を有し又は溶液相で存在し、該活性物質が該揮発性液体、特にその蒸気相を放出するとき、直接的に部分的に該液体状態又は溶液相から固体状態に変化するように選択され、かつその固体状態にある、及びその液体状態又はその溶液相にある該活性物質の両方が該マトリックス内に保持され、及び/又は該マトリックスに結合されることを特徴とする、上記化学ヒートポンプ。 請求項2 前記化学ヒートポンプが、周囲空気を前記反応器部分又は前記蒸発器/凝縮器部分のいずれかの周りを循環させるための分離壁を有するボックス内に配置されることを特徴とする、請求項1に記載の化学ヒートポンプ。 請求項3 前記ボックスが、分離壁によって結合される2つの対向する側面のところで開口しており、該ボックスが、該分離壁の自由縁部のところで連接され、前方及び後方に開口させることができるフラップを装備し、前記周囲空気が前記反応器部分又は前記蒸発器/凝縮器部分の表面を冷却できることを特徴とする、請求項2に記載の化学ヒートポンプ。 請求項4 太陽放射線が前記反応器部分の表面に向かって前面空間内に侵入できるように、前記ボックスが、太陽放射線に対して透明な壁又は板を含む前面を有することを特徴とする、請求項2又は3に記載の化学ヒートポンプ。 請求項5 前記側表面が、前記蒸発器/凝縮器部分を取り囲む前記反応器部分の円筒状外壁の一部分であることを特徴とする、請求項1に記載の化学ヒートポンプ。 請求項6 前記円筒状外壁の周りに曲げられ、該円筒状外壁と直接接触するアルミニウムプレートを含む外部熱交換器であって、該外部熱交換器の自由表面が、太陽エネルギー収集表面として構成される上記外部熱交換器を特徴とする、請求項5に記載の化学ヒートポンプ。 請求項7 前記蒸発器/凝縮器部分が、表面の少なくとも一部分のところに前記揮発性液体に対し浸透性の多孔質材料を含み、前記マトリックス及び該浸透性材料が、それらの間に存在する空間を有する同軸層として配置され、この空間が、前記流路を形成することを特徴とする、請求項1に記載の化学ヒートポンプ。 請求項8 前記マトリックスが、不活性材料であることを特徴とする、請求項1から7までのいずれか一項に記載の化学ヒートポンプ。 請求項9 前記不活性材料が、酸化アルミニウムを含むことを特徴とする、請求項8に記載の化学ヒートポンプ。 請求項10 前記マトリックスが、前記揮発性液体に対して浸透性である孔を含む材料から作られ、該孔の中に前記活性物質が付着されることを特徴とする、請求項1から9までのいずれか一項に記載の化学ヒートポンプ。 請求項11 前記活性物質がその液体状態で結合することができる表面を有する材料から前記マトリックスが作られることを特徴とする、請求項1から10までのいずれか一項に記載の化学ヒートポンプ。 請求項12 前記材料が、その液体状態にある前記活性物質及び/又はその液体状態にある前記揮発性液体によって濡らされる表面を有することを特徴とする、請求項11に記載の化学ヒートポンプ。 請求項13 前記マトリックスが、分離した粒子を含む材料から作られることを特徴とする、請求項1から12までのいずれか一項に記載の化学ヒートポンプ。 請求項14 前記分離した粒子を含む材料が、粉体又は圧縮された繊維材料であることを特徴とする、請求項13に記載の化学ヒートポンプ。 請求項15 前記マトリックスが、該マトリックス内に保持される前記活性物質と一緒に制限構造体(restrictingstructure)内に封入されることを特徴とする、請求項1から14までのいずれか一項に記載の化学ヒートポンプ。 請求項16 前記制限構造体が、少なくとも網又は繊維材料の布を含む網装置を含むことを特徴とする、請求項15に記載の化学ヒートポンプ。 請求項17 前記蒸発器/凝縮器部分が、第2の熱交換器の表面の少なくとも一部分のところに前記揮発性液体に対して浸透性である多孔質の材料を含むことを特徴とする、請求項1から16までのいずれか一項に記載の化学ヒートポンプ。 請求項18 その液体状態及び/又はガス状態にある前記揮発性液体に対して浸透性である前記多孔質の材料が、不活性材料のものであることを特徴とする、請求項17に記載の化学ヒートポンプ。 請求項19 前記不活性材料が、酸化アルミニウムを含むことを特徴とする、請求項18に記載の化学ヒートポンプ。 請求項20 その液体状態及び/又はガス状態にある前記揮発性液体に対して浸透性である前記多孔質の材料が、その液体状態及び/又はガス状態にある該揮発性液体に対して浸透性である孔を有する材料から作られることを特徴とする、請求項17から19までのいずれか一項に記載の化学ヒートポンプ。 請求項21 前記材料が、その液体状態にある前記活性物質が結合できる表面を有することを特徴とする、請求項17から20までのいずれか一項に記載の化学ヒートポンプ。 請求項22 前記材料が、その液体状態にある前記活性物質及び/又はその液体状態にある前記揮発性液体によって濡らされる表面を有することを特徴とする、請求項21に記載の化学ヒートポンプ。 請求項23 その液体状態及び/又はガス状態にある前記揮発性液体に対して浸透性である前記多孔質の材料が、分離した粒子を含む材料から作られることを特徴とする、請求項17から22までのいずれか一項に記載の化学ヒートポンプ。 請求項24 前記分離した粒子を含む材料が、粉体又は圧縮された繊維材料であることを特徴とする、請求項23に記載の化学ヒートポンプ。 請求項25 その液体状態及び/又はガス状態にある前記揮発性液体に対して浸透性である前記多孔質材料が、表面に付着される材料の層の形状を有することを特徴とする、請求項17から24までのいずれか一項に記載の化学ヒートポンプ。 請求項26 その液体状態及び/又はガス状態にある前記揮発性液体に対して浸透性である前記多孔質材料が、制限構造体内に封入されることを特徴とする、請求項17から25までのいずれか一項に記載の化学ヒートポンプ。 請求項27 前記制限構造体が、少なくとも網又は繊維材料の布を含む網装置を含むことを特徴とする、請求項26に記載の化学ヒートポンプ。 請求項28 活性物質と、該物質によって第1の温度で吸収させ、該物質によって第2のより高い温度で脱着させることができる揮発性液体とを含み、該活性物質が該第1の温度のところで固体状態を有し、該活性物質が揮発性液体及びその蒸気相を吸収するとき直ちに又は直接的に部分的に該固体状態から液体状態又は溶液相に部分的に変化し、且つ該第2の温度のところで液体状態を有し又は溶液相で存在し、該活性物質が該揮発性液体、特にその蒸気相を放出するとき、直接的に部分的に該液体状態又は溶液相から固体状態に変化する化学ヒートポンプであって、該活性物質を含有し、外部媒体によって加熱され、冷却されるように構成される反応器部分、凝縮した状態で存在する該揮発性液体の一部分を含有し、外部媒体によって加熱され、冷却されるように構成される蒸発器/凝縮器部分、及び該反応器部分と該蒸発器/凝縮器部分を互いに接続する、該揮発性液体の蒸気相のための流路を含む上記化学ヒートポンプにおいて、該反応器部分が該活性物質用のマトリックスを含み、固体状態にある及び液体状態又は溶液相にある活性物質の両方が該マトリックスによって保持され、及び/又は該マトリックスに結合され、該蒸発器/凝縮器部分が第2の熱交換器の表面の少なくとも一部分のところに該揮発性液体に対して浸透性である多孔質材料を含み、該マトリックス及び該浸透性材料がそれらの間に存在する空間を有する同軸層として配置され、該空間が流路を形成することを特徴とする、上記化学ヒートポンプ。 請求項29 同軸的に配置され、その間に、その内部に前記マトリックス及び前記浸透性材料が付着される真空密空間が存在する、外側ガラスチューブ及び内側ガラスチューブを特徴とする、請求項28に記載の化学ヒートポンプ。 請求項30 前記マトリックスが前記外側ガラスチューブの内側に直接、層として配置されることを特徴とする、請求項29に記載の化学ヒートポンプ。 請求項31 前記浸透性材料が、前記内側ガラスチューブの外側に半径方向に、直接的に層として、半径方向に配置されることを特徴とする、請求項29に記載の化学ヒートポンプ。 請求項32 前記外側ガラスチューブの外側と直接接触して配置される外部熱交換器、特にパイプ導管及び/又はフランジ熱交換器を含む熱交換器を特徴とする、請求項29から31までのいずれか一項に記載の化学ヒートポンプ。 請求項33 前記内側ガラスチューブの半径方向内側と直接接触して配置される内部熱交換器、特にパイプ導管及び/又はフランジ熱交換器を含む熱交換器を特徴とする、請求項29から32までのいずれか一項に記載の化学ヒートポンプ。
类似技术:
公开号 | 公开日 | 专利标题 Kee et al.2018|Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage Tokarev et al.2002|New composite sorbent CaCl2 in mesopores for sorption cooling/heating Younes et al.2017|A review on adsorbent-adsorbate pairs for cooling applications N'Tsoukpoe et al.2015|A review on the use of calcium chloride in applied thermal engineering US7251955B2|2007-08-07|Solid sorption heat pump EP1535002B1|2010-02-24|Sorption module US20190170448A1|2019-06-06|Adsorption system CN207662247U|2018-07-27|热泵 US8353334B2|2013-01-15|Nano tube lattice wick system US5431716A|1995-07-11|Sorption device EP1987300B1|2018-04-25|Adsorptions-wärmepumpe, adsorptions-kältemaschine und adsorberelemente hierfür CA1235304A|1988-04-19|Chemisorption air conditioner US4205531A|1980-06-03|Method in the cooling of a space and apparatus for carrying out said method CA1095878A|1981-02-17|Storage of gas Wang et al.2006|Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy Freni et al.2012|Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate” Sah et al.2015|A review on adsorption cooling systems with silica gel and carbon as adsorbents Ji et al.2007|New composite adsorbent for solar-driven fresh water production from the atmosphere US8631667B2|2014-01-21|Adsorption heat pump with heat accumulator ES2239005T3|2005-09-16|Aparato de transferencia de calor y masa mejorado y procedimiento para sistemas de sorcion de vapor-solido. US20050268633A1|2005-12-08|Sorption cooling systems, their use in automotive cooling applications and methods relating to the same Askalany et al.2012|A review on adsorption cooling systems with adsorbent carbon CN101738120B|2012-06-27|一种显热-潜热复合储热器 US6997010B2|2006-02-14|Regenerative heat pump system TW559651B|2003-11-01|Apparatus for conditioning air
同族专利:
公开号 | 公开日 EP2225500A4|2015-08-05| AU2008330258A1|2009-06-04| US20110056234A1|2011-03-10| EP2225500B1|2018-02-14| DE08853895T1|2010-12-30| CN101878400B|2012-05-30| RU2479801C2|2013-04-20| IL203947A|2013-07-31| KR101532295B1|2015-06-29| MX2010001703A|2010-03-15| KR20100098495A|2010-09-07| US8839642B2|2014-09-23| BRPI0817553A2|2015-03-31| WO2009070090A1|2009-06-04| EP2225500A1|2010-09-08| SE0702648L|2009-05-30| AU2008330258B2|2013-08-15| SE532504C2|2010-02-09| RU2010104608A|2012-01-10| CN101878400A|2010-11-03| WO2009070090A8|2010-03-25| JP5406849B2|2014-02-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2011-09-13| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110912 | 2013-01-21| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130118 | 2013-04-17| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130416 | 2013-10-07| TRDD| Decision of grant or rejection written| 2013-10-15| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131011 | 2013-11-07| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131101 | 2013-11-08| R150| Certificate of patent or registration of utility model|Ref document number: 5406849 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2016-11-01| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2017-08-15| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2018-10-16| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2019-11-08| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|